3.5 Agriculture Resources

3.5.1 Introduction and Summary

This section describes the environmental setting and impacts related to agricultural land uses for the following geographic subregions: LCR and IID water service area and AAC. The regulatory framework for agricultural land uses is provided. Because the majority of known physical activities associated with the Proposed Project and alternatives would occur within the IID water service area, the IID water service area and AAC geographic subregion is discussed in greater detail than the LCR geographic subregion. Table 3.5-1 summarizes the impacts of the Proposed Project and alternatives on the agricultural resources of the LCR, IID water service area and AAC, Salton Sea, and SDCWA service area geographic subregions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOWER COLORADO RIVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impacts.</td>
<td>Continuation of existing conditions.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>IID WATER SERVICE AREA AND AAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR-1: Reclassification of up to 50,000 acres of prime farmland or farmland of statewide importance: Significant, unavoidable impact.</td>
<td>Continuation of existing conditions.</td>
<td>No impacts.</td>
<td>A3-AR-1: Reclassification of up to 38,300 acres of prime farmland or farmland of statewide importance: Significant, unavoidable impact.</td>
<td>A4-AR-1: Reclassification of up to 50,000 acres of prime farmland or farmland of statewide importance: Significant, unavoidable impact.</td>
</tr>
<tr>
<td>SALTON SEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impacts.</td>
<td>Continuation of existing conditions.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>SDCWA SERVICE AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impacts.</td>
<td>Continuation of existing conditions.</td>
<td>No impacts.</td>
<td>No impacts.</td>
<td>No impacts.</td>
</tr>
</tbody>
</table>

1 Programmatic level analyses of USFWS’ biological conservation measures in LCR subregion and HCP (Salton Sea Portion) Approach 1: Hatchery & Habitat Replacement in Salton Sea subregion are not summarized in the table because no significance determinations have been made. Subsequent environmental documentation will be required if potential impacts are identified.
3.5.2 Regulatory Framework

This section describes the regulations, plans, and standards applicable to agriculture resources within the four geographic subregions.

3.5.2.1 Federal Regulations and Standards

The Farmland Protection Policy Act of 1981 (FPPA) requires federal agencies to minimize the extent to which federal programs contribute to unnecessary and irreversible conversion of farmland to nonagricultural uses. Farmland subject to FPPA requirements does not have to be currently used for cropland. Areas under protection include forestland, pastureland, cropland, or other land, but not bodies of water or urban, developed land.

FPPA requirements apply to projects that could irreversibly convert (directly or indirectly) farmland (as defined above) to nonagricultural use, and are completed by a federal agency or completed with the assistance (e.g., financial assistance) of a federal agency. Projects that are not subject to the FPPA include projects on land already developed for urban uses, land used for water storage, and land used for the construction of on-farm structures needed for farm operations (Natural Resources Conservation Service [NRCS] 2000).

3.5.2.2 State Regulations and Standards

State regulations and standards that apply to the IID water service area and AAC geographic subregion include the following:

California Land Conservation Act of 1965 (Williamson Act). The California Land Conservation Act of 1965 (Williamson Act) enables private landowners to enter into contracts with local governments to restrict specific parcels of land for agricultural use. The Williamson Act was adopted to provide agricultural landowners on the urban fringe, who were under pressure to convert their lands to urban use, with a financially viable alternative to conversion. Under the Williamson Act, agricultural landowners can receive property tax assessments that are much lower than other landowners because the assessments are based on generated agricultural income rather than on market (i.e., development) potential. In return, the landowners enter into contracts committing to maintain their lands for agricultural use. Approximately one-half of the state's agricultural lands (approximately 16 million acres) are subject to Williamson Act contracts.

The minimum term for a Williamson Act contract is 10 years, with automatic renewal at the end of each term. At that time, contracts can be terminated by the landowner or local government, which initiates the process of “nonrenewal.” If a property is designated for contract nonrenewal, property tax rates gradually increase during the remainder of the contract term until they reach market (i.e., non-restricted) levels. Williamson Act contracts can also be cancelled without completing the non-renewal process. Contract cancellation, however, involves a comprehensive review and approval process and the payment of fees by the landowner equal to 12 percent of the full market value of the property.

Farmland Mapping and Monitoring Program. The purpose of the California Department of Conservation’s Farmland Mapping and Monitoring Program (FMMP) is to provide jurisdictional agencies with information on farmland resources. Imperial County’s FMMP information is incorporated into the Imperial County General Plan (see Section 3.4), and is available for land use decisions and to determine acceptable uses for farmlands.
3.5.3 Environmental Setting

3.5.3.1 Lower Colorado River

A number of irrigation and water districts that provide water to agricultural fields border the LCR geographic subregion. The irrigated agricultural areas are in Riverside and Imperial Counties in California, and in La Paz and Yuma Counties in Arizona. Figure 3.5-1 shows the location of these agricultural areas.

Palo Verde Irrigation District (PVID) and Cibola Irrigation District (CID) are in the vicinity of Blythe, California. United States Department of Interior Bureau of Reclamation (Reclamation)'s Yuma and Gila Projects deliver water from the Colorado River to eight districts, divisions, or units in California and Arizona.

- The Yuma Project delivers water to the following Arizona and California entities:
 - Bard Water District
 - Indian Unit
 - Valley Division
 - Yuma Auxiliary, Unit “B” Irrigation and Drainage District

- The Gila Project delivers water to the following Arizona irrigation districts:
 - Yuma-Mesa Irrigation and Drainage District
 - Yuma Irrigation District
 - North Gila Valley Irrigation District
 - Wellton Mohawk Irrigation and Drainage District

Although some of these irrigation districts are not within the identified geographic boundaries for the Proposed Project, they all divert water from the Colorado River at, or upstream of, Imperial Dam. As such, impacts to the LCR resulting from the Proposed Project have the potential to occur in these areas of irrigated agriculture.

Table 3.5-2 shows the total irrigated acres, gross revenues, and predominant crops grown by each of the major irrigation districts that divert water from the LCR within the LCR geographic subregion. Alfalfa hay, wheat, cotton, and lettuce are generally the predominant crops.

3.5.3.2 IID Water Service Area and AAC

The IID water service area is located entirely in Imperial County and contains over 90 percent of the irrigated cropland within the county. Imperial County is an important California agricultural region ranking in the top five, in terms of value of production among California counties for 24 agricultural commodities. Imperial County ranks Number 1 among California counties in value of production for alfalfa hay, onions, wheat, sugar beets, carrots, sweet corn, watermelon, and sudan grass hay (California Agricultural Statistical Service 1999).

The IID water service area is characterized by a mild climate that allows year-round agricultural production of a wide variety of commodities. The soils found in the geographic subregion are the result of centuries of deposits by the Colorado River and, as a result, are naturally saline. Agricultural production is made possible only through the delivery of irrigation water from the Colorado River, and the availability of the Salton Sea as a repository for agricultural drainage.
Figure

3.5-1 Location of Agricultural Resources

(8-1/2x11 b/w)
TABLE 3.5-2
Agriculture Resources in the LCR Geographic Subregion, 1998

<table>
<thead>
<tr>
<th>Irrigation/Water District</th>
<th>Irrigated Acres</th>
<th>Gross Value of Production (Thousands of Dollars)</th>
<th>Predominant Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palo Verde Irrigation District</td>
<td>109,688</td>
<td>92,012(^1)</td>
<td>Alfalfa hay, cotton, wheat, melons, sudan grass</td>
</tr>
<tr>
<td>Cibola Irrigation District</td>
<td>5,059</td>
<td>2,542</td>
<td>Alfalfa hay, cotton</td>
</tr>
<tr>
<td>Yuma Project:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bard Water District</td>
<td>6,880</td>
<td>52,257</td>
<td>Wheat, lettuce, citrus, dates</td>
</tr>
<tr>
<td>Indian Unit</td>
<td>7,956</td>
<td>15,460</td>
<td>Wheat, lettuce</td>
</tr>
<tr>
<td>Valley Division</td>
<td>53,450</td>
<td>229,612</td>
<td>Wheat, sudan grass, cotton, citrus</td>
</tr>
<tr>
<td>Yuma Auxiliary “Unit B”</td>
<td>3,400</td>
<td>3,412</td>
<td>Alfalfa hay, citrus</td>
</tr>
<tr>
<td>Irrigation and Drainage District</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gila Project:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuma-Mesa Irrigation and Drainage District</td>
<td>20,230</td>
<td>25,207</td>
<td>Alfalfa seed, citrus</td>
</tr>
<tr>
<td>Yuma Irrigation District</td>
<td>10,600</td>
<td>75,060</td>
<td>Wheat, lettuce</td>
</tr>
<tr>
<td>North Gila Valley Irrigation District</td>
<td>6,587</td>
<td>42,311</td>
<td>Wheat, cotton, lettuce, broccoli</td>
</tr>
<tr>
<td>Wellton Mohawk Irrigation and Drainage District</td>
<td>62,744</td>
<td>300,269</td>
<td>Wheat, alfalfa hay, cotton, lettuce</td>
</tr>
</tbody>
</table>

Source: Reclamation 1998
\(^1\) Riverside County Agricultural Commissioner 1998

FARMLAND CLASSIFICATIONS
Under the FMMMP, an analysis of agricultural land use and changes in land use throughout California is conducted every other year. Figure 3.5-2 shows a map of IID water service area farmlands, designated by farmland classifications as described below. A more detailed explanation of the classifications can be found in “A Guide to the Farmland Mapping and Monitoring Program” (CDOC 2000).

Prime Farmland. Prime farmland represents the best combination of physical attributes leading to the production of agricultural commodities. Such land is characterized by the combination of favorable soil, geographic and climatic characteristics, and a reliable water supply to sustain long-term, high-yield agricultural production. For classification as prime farmland, the area must have been used in irrigated production at some time during the past 4 years.

Farmland of Statewide Importance. Farmland of statewide importance has characteristics similar to prime farmland; however, it is not of the highest quality. For instance, soils could have a slightly lower capacity for holding water or greater slope.
Unique Farmland. Unique farmland does not meet the qualifications for classification as prime or statewide importance; however, it is used in the production of high-value crops.

Farmland of Local Importance. A local advisory committee in Imperial County, which is generally composed of local agricultural and business interests, environmental groups, city and county planners, NRCS representatives, and university cooperative extension staff, provides recommendations to the Imperial County Board of Supervisors regarding farmlands to be designated as locally important. The Imperial County Board of Supervisors has the authority to adopt, or make changes to, farmlands of local importance within the county. Farmland of local importance does not meet the qualifications for designation as unique according to FMMP standards; however, these lands have been identified by the local advisory committee as economically important because of their productivity or value.

AGRICULTURAL PRODUCTION

From 1987 to 1999, the net farmable area within the IID water service area remained fairly constant, at approximately 484,000 acres. Of this total area, each year, on average, 22,000 farmable acres are left out of production (i.e., fallowed) and 2,000 acres leached of salts, leaving an annual net area in agricultural production of approximately 460,000 acres. Over the past 10 years, there has been a slight increase in harvested acres. The increase appears to be the result of an increase in the number of acres that are multi-cropped. This results in a total annual harvested acreage of 160 acres from a single 80-acre field. As a result of multi-cropping, the average harvested acreage in the IID water service area is consistently greater than the net acreage in production.

During 1987 to 1999, harvested acres averaged approximately 536,000 acres, while the total area in production averaged 460,000 acres. Figure 3.5-3 shows how total harvested acres, net acres farmed, and fallowed acres varied from 1987 to 1999.

Within Imperial County, the mix of crops remained relatively constant from 1987 to 1999, particularly when crops were reported as aggregate groups. IID groups the crops grown in the IID water service area into one of three crop groups: garden crops, field crops, or permanent crops.

Permanent crops are those crops, such as tree fruits, that are planted once and then grown and harvested over multiple years. Garden and field crops are generally planted during each growing season. The wide variety of fruits and vegetables grown in the IID water service area are generally categorized as garden crops. Field crops include an assortment of other crops, such as alfalfa hay, cotton, and sugar beets.
Figure

3.5-2 Map of Imperial Valley Farmlands
(8-1/2x11 color)
Figure 3.5-3 presents the harvested acreage by crop group from 1987 to 1999. With the exception of permanent crops for which substantial amounts of time and money are invested to establish productive stands, farmers base their cropping decisions on short-term, anticipated market conditions.

Table 3.5-3 shows the total acres harvested and value of production by crop classification for 1998, along with the predominant crops within each classification. Consistent with the historical data presented above, harvested acreage reported by Reclamation shows field crops as the largest crop group within the IID water service area, accounting for approximately 408,000 acres. A large portion of the field crop acreage is devoted to alfalfa hay, which helps support Imperial County's livestock industry. The next largest Reclamation crop classification, in terms of acreage, is vegetables, with just under 100,000 acres harvested in the IID water service area. In terms of gross value of production, vegetables are the dominant crop classification, with an average of $478 million, compared to $270 million for field crops.
Harvested Acres by Crop Group in the IID Water Service Area, 1987-1999

![Graph showing harvested acres by crop group in the IID Water Service Area, 1987-1999. The graph includes lines for Garden, Field, Permanent, and Harvested Acres, with data points for each year from 1987 to 1999.](image)

Source: IID 1987-1999

<table>
<thead>
<tr>
<th>Crop Group</th>
<th>Harvested Acres</th>
<th>Gross Value of Production (Millions of Dollars)</th>
<th>Predominant Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Crops</td>
<td>408,432</td>
<td>$270.7</td>
<td>Alfalfa hay, other hay (sudan grass), wheat, sugar beets</td>
</tr>
<tr>
<td>Vegetable and Nursery</td>
<td>97,120</td>
<td>$478.4</td>
<td>Lettuce, carrots, melons, onion, broccoli, asparagus</td>
</tr>
<tr>
<td>Seed</td>
<td>44,726</td>
<td>$44.0</td>
<td>Grass, alfalfa, onion</td>
</tr>
<tr>
<td>Fruits and Nuts</td>
<td>5,984</td>
<td>$22.9</td>
<td>Citrus, other fruits, dates, pecans</td>
</tr>
<tr>
<td>Total</td>
<td>556,262</td>
<td>$815.6</td>
<td></td>
</tr>
</tbody>
</table>

Source: Reclamation 1998

IRRIGATION PRACTICES

Gravity irrigation methods, such as furrow and border irrigation, account for the vast majority of irrigation application methods within the IID water service area. Recently, a few farmers have switched to level basin irrigation, and some farms have installed tailwater return systems (TRSs). Sprinkler irrigation is sometimes used in conjunction with gravity...
irrigation methods, in which seedbeds are irrigated by sprinklers until germination. At that point, a transition to furrow or border irrigation occurs.

Other than for seed germination, sprinkler technologies, such as linear move, center pivot, or solid set, are seldom used within the IID water service area. Reasons for this include the need to pressurize the water supply, and the incompatibility of some sprinkler systems with the area’s predominately clay soils. Drip irrigation is used on a limited basis, generally on permanent or highly valued crops. Because of the salinity levels of the soil and the irrigation water under all irrigation technologies, fields generally require irrigation applications in excess of crop production needs to leach salts out of the root zone.

3.5.4 Impacts and Mitigation Measures

3.5.4.1 Methodology

The conservation program would be voluntary and, as such, the exact location of participating fields and the type of actual conservation measures employed could not be accurately predicted for this analysis. The alternatives were formulated to provide a range of different conservation volumes and conservation methods and thus to allow the assessment of a range of possible impacts.

Depending on the location of specific improvements, the construction of on-farm or water delivery system improvements could convert lands within the IID water service area that historically have been in crop production to reservoirs, canals or other uses in support of on-farm irrigation system improvements or water delivery system improvements. Such changes in land use would not result in a classification change from agricultural to something other than agricultural. The changes would, therefore, not result in an impact to agricultural resources.

If fallowing were implemented as a conservation measure, land would be taken out of crop production on a rotational short-term basis, a long-term basis or even permanent fallowing. Conserving water by fallowing could result in, or increase the probability of, agricultural land being converted to something other than agricultural production. To a great extent, the likelihood of fallowed land being converted to urban land use or other non-agricultural land uses would depend on the land’s location and length of time it remains fallowed. Lands close to the boundaries of lands currently zoned for urban uses would have a higher probability of converting to non-agricultural land uses. Additionally, lands fallowed for extended periods of time would have a higher probability of being converted to something other than agricultural land use in part because of the cost off reclaiming crop lands that have not been cultivated or irrigated for extended periods. While proximity to urban land used or extended fallowing could make fallowed lands more attractive to development, conversion to a non-agricultural land use would require local approval of the change in zoning and is not part of the Proposed Project.

IID has indicated that there is the possibility that a fallowing program to conserve water for transfer could be implemented that would include permanent fallowing of crop lands, and that fallowing for mitigation and or to conserve water to meet IOP obligations would be limited to rotational fallowing. In this analysis rotational fallowing indicates that a particular parcel of land would be removed from crop production for no more than three consecutive years. To identify the maximum potential impact to agricultural resources, the
analysis assumes the worst-case scenario that all lands fallowed to conserve water for transfer would be permanently fallowed. To determine the maximum amount of impacted acreage for a voluntary program such as the Proposed Project, an average level of conservation (i.e., amount of water conserved) per fallowed acre is used. The per-acre conservation rate used in this analysis is 6 AF per fallowed acre.

The analysis of agricultural resources included the review of standards, regulations, and plans applicable to agricultural resources in the IID water service area. The potential for the Proposed Project and alternatives to result in changes to land use patterns of categorized and other farmland was evaluated to identify impacts.

Subregions Excluded from Impact Analysis. The Proposed Project and alternatives would not result in impacts to agricultural resources in either the Salton Sea subregion or the SDCWA subregion. Therefore, these subregions are not included in the impact discussion below.

3.5.4.2 Significance Criteria
The Proposed Project and/or alternatives would have a significant impact on agricultural resources if they

- Convert prime farmland, unique farmland, or farmland of statewide importance (farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency to non-agricultural use.
- Conflict with existing zoning for agricultural use or a Williamson Act contract.
- Involve other changes in the existing environment, which, because of their location or nature, could individually or cumulatively result in substantial loss of farmland to non-agricultural use.

3.5.4.3 Proposed Project

LOWER COLORADO RIVER

Water Conservation and Transfer

With the exception of the actions listed below under “Biological Conservation Measures in USFWS’ Biological Opinion,” none of the actions associated with the conservation and transfer of water will have any direct or indirect impact on the agricultural resources of the LCR geographic subregion.

Biological Conservation Measures in USFWS’ Biological Opinion

Biological conservation measures would only have the potential to affect agricultural lands that are adjacent to the Colorado River mainstem. If the creation of backwaters or cottonwood-willow habitat occurred on Prime or Unique Farmland or Farmland of Statewide Importance, this would result in the removal of this land from agricultural production. The acreage proposed for habitat restoration is relatively small (up to 1,116 acres) as is the amount proposed for backwater creation (44 acres) and would not result in substantial reduction in agricultural production within California, Arizona, or Nevada. Williamson Act contract lands may also be affected. No lands would be converted to urban use (Reclamation 2002).
These impacts are addressed at a general level in the Draft IA EIS because specific areas where these conservation measures would occur have not been identified. Site-specific studies and subsequent environmental documentation would be conducted as needed and mitigation measures identified prior to the actual implementation of the conservation measures.

Impacts resulting from the implementation of the biological conservation measures in USFWS’ Biological Opinion would be the same for Alternatives 2, 3, and 4; therefore, they are not discussed under each alternative.

IID WATER SERVICE AREA AND AAC

Water Conservation and Transfer

Impact AR-1: Reclassification of up to 50,000 acres of prime farmland or farmland of statewide importance. With implementation of the Proposed Project, up to a total of 300 KAFY could be conserved for transfer through one or more conservation measures, including fallowing. If fallowing were used as a conservation measure, it could be either rotational fallowing or permanent fallowing or a combination of the two. Rotational fallowing would be consistent with planned land uses and would not result in the reclassification of any prime or statewide important farmlands; therefore, no impact to agricultural resources would occur. However, permanent fallowing of agricultural land could be used to conserve water for transfer; therefore, the worst case impact of the Proposed Project would be the permanent fallowing of up to about 50,000 acres of land. This represents up to about 11 percent of the total net acreage in agricultural production within the IID water service area. Assuming all acreage included in the water conservation program was permanently fallowed, this would represent a significant, unavoidable impact to the agriculture resources of the IID water service area. (Significant, unavoidable impact.)

Mitigation Measure AR-1: The only way to avoid or minimize this impact is to prohibit the use of permanent fallowing under the Proposed Project. Otherwise, no mitigation measures have been proposed to avoid or minimize this impact.

Inadvertent Overrun and Payback Policy (IOP)

To conserve 59 KAFY to comply with the IOP, up to 9,800 acres could be fallowed in the IID water service area. This would represent 2 percent of the total annual net acreage in agricultural production within the IID water service area. IID has indicated that if fallowing were to be used to conserve water for the IOP, it would be rotational fallowing, whereby lands are not kept out of production for no more than three consecutive years. Implemented under these conditions, fallowing would not result in the reclassification of prime or statewide important farmland or conflict with existing zoning.

These impacts resulting from the implementation of the IOP would be the same for Alternatives 2, 3, and 4; therefore, they are discussed under each alternative.

Habitat Conservation Plan (HCP) (IID Water Service Area Portion)

Impact HCP-AR-2 Conversion of Agricultural Lands from Implementation of the HCP. The Proposed HCP includes provisions for creating new drainage canals, managed marsh habitat, and native forest habitat. These activities could potentially involve up to...
approximately 700 acres for the term of the Project. For this analysis, the worst case has been assessed by assuming that the approximately 700 acres of drains and wildlife habitat would be located on agricultural lands.

The worst-case impacts to agricultural resources from the implementation of these components of the Proposed HCP would result in approximately 700 acres of agricultural lands converted to marsh habitat, native forest habitat, or new drainage channels to the Salton Sea. This represents less than 0.5 percent of the average annual net acreage in agricultural production within the IID water service area. However, if these lands are located on prime farmland or farmland of statewide importance, implementation of the HCP (IID Water Service Area Portion) would result in a significant, unavoidable impact to agricultural resources. (Significant, unavoidable impact.)

Mitigation Measure HCP-AR-2: The only way to avoid or minimize this impact is to prohibit the use of permanent fallowing under the HCP (IID Water Service Area Portion). Otherwise, no mitigation measures have been proposed to avoid or minimize this impact.

HCP (Salton Sea Portion) Approach 1: Hatchery and Habitat Replacement
The selection of HCP (Salton Sea Portion) Approach 1 could result in the conversion of 5,000 acres of land to create ponds to support fish and provide a forage base for piscivorous birds. If all 5,000 acres of ponds were constructed on lands zoned and used for agricultural production, this would represent a decrease in lands available for agricultural production within the IID water service area of about 1 percent. If additional water is necessary to operate and maintain the ponds, agricultural lands would likely be fallowed on a rotational basis to generate such water supplies. If additional supplies are necessary, the impacts of generating that water would be evaluated in subsequent environmental documentation.

HCP (Salton Sea Portion) Approach 2 (HCP2): Use of Conserved Water as Mitigation
The selection of HCP (Salton Sea Portion) Approach 2 could result in the fallowing of up to 25,000 acres of agricultural lands within the IID water service area. This would represent approximately 5 percent of the net acres in production in the IID water service area. Fallowing to conserve water for mitigation would be limited to rotational fallowing where lands are not fallowed for more than three consecutive years. Implemented under these conditions, fallowing would not convert farmland or lead to the rezoning of agricultural lands to non-agricultural uses. (Less than significant impact.)

This impacts resulting from implementation of the HCP would be the same for Alternative 2, 3, and 4; therefore, they are not discussed under each alternative.

3.5.4.4 Alternative 1: No Project
Implementation of the No Project alternative would maintain existing agricultural conditions in the geographic subregions discussed in this analysis, including the average amount of fallowing in the IID water service area of approximately 20,000 acres per year.
3.5.4.5 Alternative 2 (A2): Water Conservation and Transfer of 130 KAFY to SDCWA (On-farm Irrigation System Improvements as Exclusive Conservation Measure)

LOWER COLORADO RIVER

Water Conservation and Transfer
With the exception of the actions listed under “Biological Conservation Measures in USFWS’ Biological Opinion,” none of the actions associated with the conservation and transfer of water will have any direct or indirect impact on the agricultural resources of the LCR geographic subregion.

IID WATER SERVICE AREA AND AAC

Water Conservation and Transfer
Implementation of on-farm irrigation system improvements to conserve water would not result in the conversion of agricultural lands to other uses, conflict with existing agricultural zoning or result in the reclassification of prime or statewide important farmland. Therefore, there would not be any impact to the agricultural resources in the IID water service area.

3.5.4.6 Alternative 3 (A3): Water Conservation and Transfer of Up to 230 KAFY to SDCWA, CVWD, and/or MWD (All Conservation Measures)

LOWER COLORADO RIVER

Water Conservation and Transfer
With the exception of the actions listed under “Biological Conservation Measures in USFWS’ Biological Opinion,” none of the actions associated with the conservation and transfer of water will have any direct or indirect impact on the agricultural resources of the LCR geographic subregion.

IID WATER SERVICE AREA AND AAC

Water Conservation and Transfer
Impact A3-AR-1: Reclassification of up to 38,300 acres of prime farmland or farmland of statewide importance. Alternative 3 includes the conservation of up to 230 KAFY for transfer through one or more conservation measures, including fallowing. If fallowing were used as a conservation measure, it could be either rotation fallowing, permanent fallowing or a combination of the two. Rotational fallowing would be consistent with existing land uses and would not result in the reclassification of any prime or statewide important farmlands; therefore, no impacts to agriculture resources would occur. However, permanent fallowing could be used to conserve water for transfer; therefore, the worst-case impact of the Alternative 3 would be the permanent fallowing of up to 38,300 acres of land. This represents up to 8 percent of the total net acreage in agricultural production within the IID water service area. Assuming all acreage was permanently fallowed this would represent a significant, unavoidable impact to the agriculture resources in the IID water service area. (Significant, unavoidable impact.)
Mitigation Measure A3-AR-1: The only way to avoid or minimize this impact is to prohibit the use of permanent fallowing under this alternative. Otherwise, no mitigation measures have been proposed to avoid or minimize this impact.

3.5.4.7 Alternative 4: Water Conservation and Transfer of Up to 300 KAFY to SDCWA, CVWD, and/or MWD (Fallowing As Exclusive Conservation Measure)

LOWER COLORADO RIVER

Water Conservation and Transfer

With the exception of the actions listed under “Biological Conservation Measures in USFWS’ Biological Opinion,” none of the actions associated with the conservation and transfer of water will have any direct or indirect impact on the agricultural resources of the LCR geographic subregion.

IID WATER SERVICE AREA AND AAC

Water Conservation and Transfer

Impact A4-AR-1: Reclassification of up to 50,000 acres of prime farmland or farmland of statewide importance. Alternative 4 includes conservation of up to 300 KAFY for transfer using fallowing as the exclusive conservation measure. Fallowing could be either rotational fallowing or permanent fallowing or a combination of the two. Rotational fallowing would be consistent with existing agricultural land uses and would not result in the reclassification of any prime or statewide important farmlands; therefore there would not be any impact to agriculture resources. However, permanent fallowing could be used to conserve water for transfer; therefore, the worst case impact of the Proposed Project would be the permanent fallowing of up to 50,000 acres of land. This represents up to 11 percent of the total net acreage in agricultural production within the IID water service area. Assuming all acreage was permanently fallowed this would represent a significant, unavoidable impact to the agriculture resources in the IID water service area. (Significant, unavoidable impact.)

Mitigation Measure A4-AR-1: The only way to avoid or minimize this impact is to prohibit the use of permanent fallowing under this alternative. Otherwise, no mitigation measures have been proposed to avoid or minimize this impact.