Status Report:
Main Canals Seepage Interception Project

Presented by Darren Fillmore
Water Transfer Program

April 15, 2008
An Important Milestone for IID

- First component of the Efficiency Conservation Program
- Estimated to conserve about 40,000 AF/yr when fully implemented

Seepage water pumped from the EHL 14 Drain flows into the East Highline Canal
Project Overview

- The Efficiency Conservation Definite Plan recommended main canals seepage interception systems as a low-cost water conservation measure.

- MWA approved in May 2007
 - Approved budget: $7.7 million
Data Collection and Preliminary Design Work Began in June 2007
Construction Began in August 2007

A construction crew works to install a well structure at the Holtville 7 Drain.
Construction of Four Systems
Completed in February 2008

Seepage recovery systems have been operating at the Orita, Orita 1, EHL 14, and Holtville Main drains since February 28, 2008.
Current Activities

- Design drawings are completed for the remaining 18 systems.
- Engineers and project managers are preparing to acquire the remaining pumps and related materials.
- Construction continues at the other sites.
 - 14 sump structures have been installed.
- Energy crews have constructed 13 overhead line extensions.
Current Activities (cont.)

- Start-up and Testing of Phase 1 Systems
 - As part of the start-up procedures, pump systems are being tested, compared to designs and, where possible, field adjusted to improve efficiency of operation.
 - One pump motor has been running hotter than the other three and the pump supplier is seeking a resolution with the motor manufacturer.
Schedule

- Estimated project completion date is December 31, 2008.
- Based on this schedule, the water conservation yield for CY2008 is estimated to be 10,000 – 17,000 AF.
- For CY2009, with all systems completed, the estimated water conservation yield is 40,000 AF.
Of the approved $7.7M budget, expenditures to date are as follows:

<table>
<thead>
<tr>
<th>Activity</th>
<th>2007</th>
<th>2008 to Date</th>
<th>Total to Date(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>$348,122</td>
<td>$1,099,530</td>
<td>$1,447,652</td>
</tr>
<tr>
<td>Electric Service</td>
<td>128,985</td>
<td>331,058</td>
<td>460,043</td>
</tr>
<tr>
<td>Engineering</td>
<td>426,266</td>
<td>102,615</td>
<td>528,881</td>
</tr>
<tr>
<td>Common Costs(^1)</td>
<td>120,419</td>
<td>57,116</td>
<td>177,535</td>
</tr>
<tr>
<td>Total</td>
<td>$1,023,792</td>
<td>$1,590,319</td>
<td>$2,614,111</td>
</tr>
</tbody>
</table>

\(^{1}\) Includes project administration, consultant services, and specialized equipment

\(^{2}\) Current estimates of average water cost range from $15-18/AF.